High-pass filtering to remove electrocardiographic interference from torso EMG recordings.
نویسندگان
چکیده
UNLABELLED Removal of electrocardiographic (ECG) contamination of electromyographic (EMG) signals from torso muscles is often attempted by high-pass filtering. This study investigated the effects of the cut-off frequency used in this high-pass filtering technique on the resulting EMG signal. Surface EMGs were recorded on five subjects from the rectus abdominis, external oblique, and erector spinae muscles. These signals were then digitally high-pass filtered at cut-off frequencies of 10, 30, and 60 Hz. Integration and power analyses of the filtered EMGs were subsequently performed. It was found that an increase in the cut-off frequency affects the integrated EMG signal by (1) reducing the ECG contamination, (2) decreasing the amplitude, and (3) smoothing the signal. It was concluded that the use of a high-pass filter is effective in reducing ECG interference in integrated EMG recordings, and a cut-off frequency of approximately 30 Hz was optimal. RELEVANCE Electromyographic recordings of torso muscles are often used in the development of low-back biomechanical models. Unfortunately, these recordings are usually contaminated by electrocardiographic interference. High-pass filtering methods are sometimes used to diminish the influence of ECG from surface EMGs; however, the effects of these filters on the recorded and processed EMG have not been reported. The findings show that high-pass filtering is effective in reducing ECG contamination and motion artefact from integrated EMGs when the appropriate cut-off frequency is used. Inappropriate cut-off frequencies lead to either incomplete ECG removal or excess filtering of the EMG signal.
منابع مشابه
FastICA peel-off for ECG interference removal from surface EMG
BACKGROUND Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. METHODS A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surfa...
متن کاملEpoch length to accurately estimate the amplitude of interference EMG is likely the result of unavoidable amplitude cancellation
Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time wind...
متن کاملLocal Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.
Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorde...
متن کاملOptimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles.
Spontaneous pericranial electromyographic (EMG) activity is generally small and is contaminated by strong low-frequency artifacts. High-pass filtering should suppress artifacts but affect EMG signal power only minimally. In 24 subjects who performed a warned simple reaction time task, the optimal high-pass cut-off frequency was examined for nine different pericranial muscles. From four experime...
متن کاملSurface EMG Signal Amplification and Filtering
Electromyographic (EMG) signals have been widely employed as a control signal in rehabilitation and a means of diagnosis in health care. Signal amplification and filtering is the first step in surface EMG signal processing and application systems. The characteristics of the amplifiers and filters determine the quality of EMG signals. Up until now, searching for better amplification and filterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical biomechanics
دوره 8 1 شماره
صفحات -
تاریخ انتشار 1993